Previsão por Técnicas de Suavização Este site é uma parte dos objetos de aprendizagem de JavaScript E-Labs para tomada de decisão. Outros JavaScript nesta série são categorizados sob diferentes áreas de aplicações na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são suavização. Estas técnicas, quando devidamente aplicadas, revelam mais claramente as tendências subjacentes. Insira a série de tempo em ordem de linha em seqüência, começando pelo canto superior esquerdo e o (s) parâmetro (s) e, em seguida, clique no botão Calcular para obter uma previsão de um período antecipado. Caixas em branco não são incluídas nos cálculos, mas zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados use a tecla Tab não seta ou digite chaves. Características de séries temporais, que podem ser reveladas ao examinar seu gráfico. Com os valores previstos, eo comportamento residual, modelagem de previsão de condições. Médias móveis: As médias móveis classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados para filtrar o ruído branco aleatório dos dados, para tornar a série de tempo mais suave ou mesmo para enfatizar certos componentes informativos contidos na série de tempo. Suavização Exponencial: Este é um esquema muito popular para produzir uma Série de Tempo suavizada. Enquanto que em Médias Móveis as observações passadas são ponderadas igualmente, a Suavização Exponencial atribui pesos exponencialmente decrescentes à medida que a observação avança. Em outras palavras, observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Double Exponential Smoothing é melhor para lidar com as tendências. Triple Exponential Smoothing é melhor no manuseio de tendências de parabola. Uma média móvel exponencialmente ponderada com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 / (n1) OR n (2 - a) / a. Assim, por exemplo, uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,04878. Suavização Linear Exponencial de Holts: Suponha que a série de tempo não é sazonal, mas exibe tendência. Holts método estima tanto o nível atual ea tendência atual. Observe que a média móvel simples é caso especial da suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) / Alpha. Para a maioria dos dados empresariais, um parâmetro Alpha menor que 0,40 é frequentemente eficaz. No entanto, pode-se realizar uma busca de grade do espaço de parâmetro, com 0,1 a 0,9, com incrementos de 0,1. Então o melhor alfa tem o menor erro médio absoluto (erro MA). Como comparar vários métodos de alisamento: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla consiste na comparação visual de várias previsões para avaliar a sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário plotar (usando, por exemplo, Excel) no mesmo gráfico os valores originais de uma variável de série temporal e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões Passadas por Técnicas de Suavização JavaScript para obter os valores de previsão anteriores com base em técnicas de suavização que usam apenas um único parâmetro. Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ótimos, ou mesmo próximos, ótimos por tentativa e erros para os parâmetros. A suavização exponencial única enfatiza a perspectiva de curto alcance que define o nível para a última observação e é baseada na condição de que não há tendência. A regressão linear, que se ajusta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa a faixa de longo alcance, que está condicionada à tendência básica. Holts linear suavização exponencial captura informações sobre tendência recente. Os parâmetros no modelo de Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande, e as tendências-parâmetro devem ser aumentadas se a tendência de direção recente é apoiada pelo causal alguns fatores. Previsão de Curto Prazo: Observe que cada JavaScript nesta página fornece uma previsão de um passo adiante. Para obter uma previsão de duas etapas. Basta adicionar o valor previsto ao final dos dados de séries temporais e, em seguida, clicar no mesmo botão Calcular. Você pode repetir este processo por algumas vezes, a fim de obter as previsões de curto prazo necessárias. Market Data Perguntas Exponencial Versus Simple Mover médias Hi Tom - Eu sou um assinante de vocês e queria saber se você tinha um gráfico ldquoconversionrdquo para converter o valor da tendência Em MAs exponenciais de período. Por exemplo, 10 Trend é praticamente igual a um EMA de 19 períodos, 1 Tendência para 200EMA etc. Obrigado antecipadamente. A fórmula para converter uma constante de suavização de média móvel exponencial (EMA) para um número de dias é: 2 mdashmdashmdash-N 1 em que N é o número de dias. Assim, um EMA de 19 dias se enquadraria na fórmula como se segue: 2 2 mdashmdashmdashmdash-mdashmdashmdash - 0.10 ou 10 19 1 20 Isto decorre da ideia de que a constante de alisamento é escolhida de modo a dar a mesma idade média dos dados Como seria feito em uma média móvel simples. Se você tivesse uma média móvel simples de 20 períodos, então a idade média de cada entrada de dados é 9.5. Pode-se pensar que a idade média deve ser 10, uma vez que é metade de 20, ou 10,5 desde que é a média dos números 1 a 20. Mas na convenção estatística, a idade do mais recente pedaço de dados é 0. Então Encontrar a média de idade dos últimos 20 pontos de dados é feita encontrando a média dessa série: Assim, a idade média dos dados em um conjunto de N períodos é: N - 1 mdashmdashmdashmdash - 2 Para a suavização exponencial, com uma constante de suavização de A , Resulta da matemática da teoria da soma que a idade média dos dados é: 1 - A mdashmdashmdashmdash - A Combinando estas duas equações: 1 - AN - 1 mdashmdashmdash mdashmdashmdashmdash A 2 podemos resolver para um valor de A que iguala um EMA para um comprimento médio móvel simples como: 2 A mdashmdashmdashmdash - N 1 Você pode ler uma das peças originais já escritas sobre este conceito, indo para McClellanMTAaward. pdf. Lá, nós excerpt de P. N. Haurlanrsquos panfleto, ldquoMeasuring Trend Valuesrdquo. Haurlan foi uma das primeiras pessoas a usar médias móveis exponenciais para rastrear os preços das ações na década de 1960, e ainda preferimos sua terminologia original de uma Tendência XX, ao invés de chamar uma média móvel exponencial em alguns dias. Uma grande razão para isso é que com uma média móvel simples (SMA), você está apenas olhando para trás um certo número de dias. Qualquer coisa mais antiga que esse período de lookback não fator no cálculo. Mas com uma EMA, os dados antigos nunca desaparecem, torna-se cada vez menos importante para o valor da média móvel. Para entender por que os técnicos se preocupam com EMAs versus SMAs, um rápido olhar para este gráfico fornece alguns uma ilustração da diferença. Durante os movimentos de tendência para cima ou para baixo, uma tendência de 10 e uma SMA de 19 dias em grande parte estarão corretas juntas. É durante os períodos em que os preços são agitados, ou quando a direção da tendência está mudando, que vemos os dois começarem a se separar. Nesses casos, a tendência 10 geralmente abraçar a ação de preços mais de perto e, portanto, estar em melhor posição para sinalizar uma mudança quando o preço cruza-lo. Para muitas pessoas, esta propriedade faz EMAs ldquobetterrdquo do que SMAs, mas ldquobetterrdquo está no olho do espectador. A razão pela qual os engenheiros usaram EMAs há anos, especialmente na eletrônica, é que eles são mais fáceis de calcular. Para determinar todayrsquos novo valor EMA, você só precisa yesterdayrsquos valor EMA, a constante de suavização, e todayrsquos novo preço de fechamento (ou outro datum). Mas para calcular um SMA, você tem que saber cada valor de volta no tempo para todo o período de lookback. Dados suaves remove variação aleatória e mostra tendências e componentes cíclicos Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavizar. Essa técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de alisamento Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Vamos primeiro investigar alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico oferece em unidades de 1000 dólares. Ele / ela toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média computada ou média dos dados 10. O gerente decide usar isto como a estimativa para despesa de um fornecedor típico. Esta é uma boa ou má estimativa O erro quadrático médio é uma maneira de julgar o quão bom é um modelo Vamos calcular o erro quadrático médio. O valor verdadeiro do erro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados do MSE por exemplo Os resultados são: Erro e esquadrado Erros A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência? Um olhar para o gráfico abaixo mostra claramente que não devemos fazer isso. A média pondera todas as observações passadas igualmente Em resumo, afirmamos que A média simples ou média de todas as observações passadas é apenas uma estimativa útil para previsão quando não há tendências. Se houver tendências, use estimativas diferentes que levem em conta a tendência. A média pesa todas as observações passadas igualmente. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra forma de calcular a média é adicionando cada valor dividido pelo número de valores, ou 3/3 4/3 5/3 1 1.3333 1.6667 4. O multiplicador 1/3 é chamado de peso. Em geral: barra fração soma esquerda (fratura direita) x1 esquerda (fratura direita) x2,. ,, Esquerda (frac direito) xn. O (esquerda (frac direito)) são os pesos e, naturalmente, somam a 1.
No comments:
Post a Comment